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Abstract

Results of evaluations of electromechanical coupling
factors k*31, k*33 and k*15 in PbTiO3-based ferro-
electric ceramics are reported. A sensibility of these
parameters to changes in electromechanical con-
stants, temperature, 90� domain structure of grains,
and composition of ceramics is discussed. # 1999
Elsevier Science Limited. All rights reserved
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Electromechanical properties of ferroelectrics and
related materials are various and very important
for many applications. Needless to say, informa-
tion is of value on an anisotropy of these properties
and on ways of creating high-anisotropic materials.
In particular, an interest in the problem of the
large piezoelectric anisotropy in ferroelectrics and
related materials is associated with investigations
of physical mechanisms responsible for this e�ect1±5

and with various applications of these materials. In
a case of perovskite-type PbTiO3-based polarized
ferroelectric ceramics (FC) it has been shown in
our previous papers2±4,6,7 that the small anisotropy
of dielectric permittivities of stress-free single-
domain crystals forming FC grains as well as the 90�

domain structure of the grains lead to considerable
increasing of the anistropy of piezoelectric moduli
d�33=jd�31j or electromechanical coupling factors
k�33=jk�31j. The majority of experimental papers (see,
e.g. Refs. 1,8 and 9) contain incomplete informa-
tion on a behaviour of the k�ij factors of FC men-
tioned above if to take into account possible e�ects

of the domain structure, temperature, electric and
mechanical ®elds, modifying ions, etc. Among the-
oretical works devoted to an interpretation of
e�ects connected with the large piezoelectric ani-
sotropy one can single out a paper10 where some
electromechanical coupling factors were evaluated
for PbTiO3-based ceramic compositions by taking
into account the role of unit-cell spontaneous
strains and an orientation of spontaneous polar-
ization vectors in grains. The present paper is
aimed at calculations of the k�ij factors as functions
of the 90� domain volume concentration, tempera-
ture or the molar concentration of modifying ions.
Objects chosen for our study are FC of PbTiO3 (PT)
and (Pb1-xCax) [(Co0�5W0�5)0�04Ti0�96]O3 (PCT). A
preference for such the choice consists in the pre-
sence of experimental data on stress-free single-
domain PT crystals2 and of corresponding data
evaluated for PCT compositions by using our
approach.4 Some di�erences in the k�ij functions of
these two FC will also be discussed in the paper.
Our consideration is realized in terms of a model

of the spherical grain whose electromechanical
interaction with the surrounding FC medium is
described by Marutake self-consistent method.11,12

The grain is assumed to be split into 90� domains
of two types having the volume concentrations m
and 1ÿm, respectively. It may be assumed that the
m value corresponds to the domain type whose
spontaneous polarization vector Ps is oriented clo-
sely to a direction of an external electric ®eld E
used for poling the FC sample. We do not take
into consideration 180� domains disappearing
under the ®eld E exceeding the coercive ®eld of 180�

reorientations. We assume that 90� domain walls
are motionless or very slightly movable in the
grains, as follows from experimental results13 con-
cerning the behaviour of chemically pure PT FC in
external electric or mechanical ®elds. The transition
from piezoelectric, dielectric and elastic constants
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of the single-domain crystal (grain) to the similar
constants of the grain with the regular laminated
90� domain structure proceeds by using formulae14

generalized for any values of 0 � m � 1. These
formulae belong to a (X0Y0Z0) rectangular coordi-
nate system for a laminated structure with 2m sym-
metry where the axis 2 is parallel to the (OZ0) axis
and the mirror plane is perpendicular to both the
(OX0) and (OY0) axes. Hereafter spontaneous
polarization vectors of two types of the 90� domains
are (P, P, 0) and (ÿP, P, 0). Some piezoelectric mod-
uli d0ij of these domains are determined in the
(X0Y0Z0) system as follows:14

d 0
31 � �d31 � d33 ÿ d15�=�2

���
2
p �;

d 0
32 � d31=

���
2
p

; d033 � �d31 � d33 � d15�=�2
���
2
p �; and

d 0
24 � �2s66=�sE

44 � s66��d15=
���
2
p
;

where dij and sE
ij are the piezoelectric moduli and

elastic compliances of the single-domain crystal
with 4mm symmetry. A next step supposes aver-
aging d 0

ij, elastic and dielectric constants written for

the (X0Y0Z0) coordinate system by taking into
account boundary conditions for electric and
mechanical ®elds at the 90� domain walls and
volume concentrations of the 90� domains. The
procedure of further averaging the derived constants
of the polydomain crystal can be realized on the basis
of results11,12 and enables to obtain a series of eval-
uated constants of the FC sample, e.g. dielectric
permittivities "��ij for the stress-free state, piezo-
electric moduli d�ij and elastic compliances s�Eij at
E=const.
As is known, the electromechanical coupling

factors are used for a quantitative description of a
conversion of electric and mechanical energy con-
tributions. These factors contain all three basic
types of electromechanical constants of FC and are
described by formulae15

k�31 � d�31�s�E11 "��33�ÿ1=2;
k�33 � d�33�s�E33 "��33�ÿ1=2 and

k�15 � d�15�s�E44 "��11�ÿ1=2

Results of our evaluations are shown in Fig. 1 and
Table 1. For example, the k�ij factors demonstrate
distinct dependences on the 90� domain volume
concentration m and temperature T (Fig. 1). Chan-
ging the k�31 sign by a variation of m and/or T is
associated with a possibility of d�31�m;T� ! 0. It
provides the very large anisotropy of PT FC,
including d�33=jd�31j ! 1. Our evaluations testify
also to the small anisotropy of elastic compliances

Fig. 1. Electromechanical coupling factors k�ij (a, b and c) and
dielectric anisotropy z (d) as functions of the 90� domain
volume concentration m and temperature T in PbTiO3 ferro-
electric ceramics. (a) ij=31, (b) ij=33 and (c) ij=15. In all
plots curves 1, 2, 3, 4, 5, 6 and 7 correspond to temperatures
T=ÿ150, ±50, 0, 25, 50, 100, and 200�C, respectively. Calcu-
lations were performed by using experimental data16,17 on

stress-free single-domain crystals.

1214 V. Yu. Topolov et al.



Table 1. Electromechanical coupling factors k�ij and dielectric anisotropy z of (Pb1-xCax)[(Co0�5W0�5)0�04Ti0�96]O3+0.01 MnCO3

ferroelectric ceramics for di�erent 90� domain volume concentrations m and Ca molar concentrations xa

m 0.5 0.6 0.7 0.8 0.9 1.0

x=0.1500
k�31; 10

ÿ2 ±2.25 ±2.52 ±3.25 ±4.52 ±6.07 ±7.74
k�33 0.288 0.288 0.290 0.295 0.306 0.312
k�15 0.203 0.208 0.220 0.236 0.255 0.272
z 0.977 0.978 0.980 0.984 0.985 0.986
x=0.2000
k�31; 10

ÿ2 ±1.56 ±1.81 ±2.58 ±3.84 ±5.46 ±7.42
k�33 0.287 0.288 0.291 0.299 0.311 0.319
k�15 0.200 0.205 0.217 0.234 0.252 0.259
z 0.976 0.976 0.979 0.982 0.982 0.983
x=0.2300
k�31; 10

ÿ2 ±0.958 ±1.19 ±1.90 ±3.10 ±4.62 ±6.23
k�33 0.285 0.287 0.291 0.300 0.313 0.330
k�15 0.195 0.200 0.212 0.228 0.247 0.265
z 0.975 0.975 0.977 0.978 0.980 0.980
x=0.2400
k�31; 10

ÿ2 ±0.737 ±0.977 ±1.72 ±2.94 ±4.48 ±6.14
k�33 0.289 0.290 0.295 0.305 0.319 0.336
k�15 0.197 0.202 0.214 0.230 0.249 0.267
z 0.974 0.974 0.976 0.978 0.978 0.978
x=0.2450
k�31; 10

ÿ2 ±0.568 ±0.795 ±1.50 ±2.67 ±4.17 ±5.76
k�33 0.293 0.295 0.300 0.311 0.325 0.343
k�15 0.199 0.203 0.215 0.232 0.250 0.269
z 0.972 0.972 0.974 0.975 0.977 0.977
x � 0�2475
k�31; 10

ÿ2 ÿ0.494 0.725 ÿ1.50 ÿ2.66 ÿ4.01 ÿ5.58
k�33 0.295 0.295 0.300 0.314 0.329 0.347

k�15 0.199 0.203 0.215 0.233 0.252 0.270

z 0.971 0.972 0.973 0.975 0.975 0.975
x=0.2500b

k�31; 10
ÿ2 ±0.419 ±0.628 ±1.29 ±2.40 ±3.83 ±5.39

k�33 0.298 0.300 0.306 0.317 0.332 0.351
k�15 0.201 0.205 0.217 0.234 0.253 0.271
z 0.970 0.9671 0.972 0.973 0.974 0.974
x=0.2525
k�31; 10

ÿ2 ±0.432 ±0.642 ±1.30 ±2.42 ±3.86 ±5.41
k�33 0.299 0.301 0.307 0.318 0.333 0.352
k�15 0.201 0.206 0.218 0.235 0.254 0.272
z 0.970 0.971 0.972 0.974 0.974 0.974
x=0.2550
k�31; 10

ÿ2 ±0.442 ±0.655 ±1.33 ±2.47 ±3.88 ±5.43
k�33 0.300 0.302 0.308 0.319 0.334 0.353
k�15 0.202 0.207 0.218 0.236 0.254 0.273
z 0.970 0.970 0.972 0.974 0.974 0.974
x=0.2575
k�31; 10

ÿ2 ±0.458 ±0.668 ±1.34 ±2.50 ±3.91 ±5.46
k�33 0.300 0.302 0.308 0.320 0.335 0.354
k�15 0.202 0.207 0.219 0.236 0.255 0.274
z 0.970 0.970 0.971 0.973 0.974 0.974
x=0.2600
k�31; 10

ÿ2 ±0.468 ±0.677 ±1.34 ±2.55 ±3.92 ±5.48
k�33 0.300 0.303 0.310 0.321 0.336 0.355
k�15 0.203 0.208 0.220 0.237 0.256 0.275
z 0.970 0.971 0.972 0.973 0.974 0.974
x=0.2650
k�31; 10

ÿ2 ±0.648 ±0.871 ±1.56 ±2.72 ±4.22 ±5.81
k�33 0.299 0.302 0.308 0.319 0.335 0.353
k�15 0.204 0.208 0.221 0.238 0.257 0.276
z 0.970 0.971 0.972 0.974 0.975 0.975
x=0.2800
k�31; 10

ÿ2 ±1.16 ±1.40 ±2.17 ±3.43 ±5.01 ±6.70
k�33 0.299 0.301 0.307 0.317 0.332 0.350
k�15 0.206 0.211 0.224 0.241 0.260 0.279
z 0.972 0.973 0.975 0.976 0.978 0.978
x=0.3000
k�31; 10

ÿ2 ±1.67 ±1.94 ±2.78 ±4.14 ±5.84 ±7.62
k�33 0.288 0.290 0.295 0.304 0.318 0.336
k�15 0.203 0.207 0.220 0.237 0.257 0.276
z 0.976 0.976 0.978 0.981 0.982 0.982

aExperimental data on stress-free single domain crystals were taken from Ref. 4. All the evaluated data correspond to T � 25�C.
bThe highest density of x values was chosen in the extrema region for k�ij�m;x� functions.

Electromechanical coupling factors in PbTiO3-type ferroelectric ceramics 1215



s�E11 =s
�E
33 ! 1 that cannot considerably change the

approximate proportion k�33=jk�31j � d�33=jd�31j
within the m and T ranges chosen in Fig. 1. It
should be noted that the wide temperature range of
ÿ150�C � T � 200�C is favourable for reaching
the large piezoelectric anisotropy (i.e. k�33=jk�31j � 1
or d�33=jd�31j � 1) because of the small dielectric
anisotropy z � "��11="��33 < 1, as it was analysed ear-
lier.2±4 It is remarkable that the characteristic
values of this anisotropy z=0.989...0.998 corre-
spond to temperatures which are lower by ca
300�C than the Curie point of PT crystals.16,17

Another interesting example of k�ij�m;x� func-
tions is shown in Table 1. First for all the increas-
ing jk�ij�m; x�j functions for any x=const and the
fact that the highest anisotropy in this case is rea-
lized for polydomain grains (m � 0�5) without
passing k�31 through the zero value should be poin-
ted out. Various types of the monotonic k�ij�m;x�
functions of PCT FC are realized for any
m=const. In particular, for the equal domain
volume concentrations, these functions contain
extreme points within the range of
0�23 � x � 0�28, e.g. di�use minima and maxima
in k�33�0�5;x� and k�15�0�5;x� as well as a maximum
in k�31�0�5;x�. The concentration range is char-
acterized by a di�use peak3,4 of a function of the
electrostrictive constant Q12�x� of PCT in the vici-
nity of x0 � 0�25�, and this circumstance in¯uences
results of calculating all the FC electromechanical
constants, especially the piezoelectric moduli d�ij
(e.g. d�33=jd�31j has a maximum at x � x0) and elec-
tromechanical coupling factors k�ij. Therefore, one
can speak on the concentration range of
0�23 � x � 0�28 surrounding the x0 point where
the mentioned extrema are present. The important
feature of this range is a ful®lment of an inequality
k�33�0�5;x�=jk�31�0�5;x�j � 1. Increasing the domain
volume concentration m! 1 leads to a violation of
this inequality that may be interpreted as the
negative e�ect of trends in the monodomenization
on the FC piezoelectric anisotropy. As in the case
of PT FC, the dielectric anisotropy z! 1 does
not undergo considerable changes within the wide
m range for x=const, but it has weak minima
in dependences on x for ®xed m value (Table 1)
that favours the large piezoelectric anisotropy in
PCT FC.
The study of the k�ij�m;T� and k�ij�m;x� depen-

dences in PT and PCT FC, respectively, allows to
establish some quantitative conditions for the rea-
lization of the large piezoelectric anisotropy. Of
particular interest are the extrema of the k�ij�m;x�
functions within the region of 0�23 � x � 0�28.
The comparison of the evaluated k�ij with the
experimental data on the electromechanical cou-
pling factors k�ij exper�x� of PCT FC8 shows some

quantitative agreement for ij � 31, however, the
presence of extreme for ij � 33; 15 and m=const
within the concentration x range needs a further
experimental proof. It should be also taken into
account that revealing these extrema can be pre-
vented because of possible negative in¯uence of 90�

domain-well displacements, microstructural and
technological factors on the k�ij�m; x� dependences
in PCT FC.
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